Executive summary: A key goal of the PACIFIC project is to develop methodologies for the extraction of body waves from passive seismic data, for use in the environmentally sustainable environments. Recovering body waves from ambient noise data has proved to be challenging as they are usually weak and ambient noise fields are rich in surface waves. Here we propose and test a method, based on the Radon Transformation, that helps suppress surface waves and enhance reflected body waves. The method exploits the ‘moveout’ differences between reflected body (hyperbolic) and surface waves (linear) and is tested on synthetic 2D & 3D model data prior to its application to ambient noise field data. We refer to it as Radon Correlation. Synthetic tests are very encouraging, showing clear body wave recovery that cannot be seen in raw cross-correlated data. Using these synthetics to have a choice of parameters, we then move to field passive data from the Marathon site within PACIFIC. We generate virtual shot gathers by applying Radon Correlation to single virtual sources into a linear array of receivers. Again, results are very encouraging with clear reflected body wave recovery from the ambient noise data and determined by clear hyperbolic arrivals on the virtual shot gathers. There is a hint that using time windows that contain active blast seismic coda possibly further enhances body wave recovery. Finally, velocity analysis on these virtual shot gathers leads to a P-wave velocity model that compares well with models derived from surface wave dispersion analysis of the same ambient noise data. However, these models are not currently publicly available and hence are not shown here, in this report.
Comments