SOTERIA Final Workshop | 25 - 27 June 2019 Miraflores de la Sierra

TASK 5.4: INTEGRATION & APPLICATION PROGRESS & ACHIEVEMENTS

Amel Gosset Task leader: Phimeca Contributing partners: All

This project received funding under the Euratom research and training programme 2014-2018 under grant agreement N° 661913

Integration of new modules

- Analytical Tensile Curve
 - Evaluate the stress-strain curve using
 - $_{\circ}\,$ A temperature-depending elastic law
 - A hardening model
- Experimental Tensile Curve
 - Load experimental stress-strain data and make it compatible with Charpy of CT calculation
- Charpy
 - Predict a Charpy energy based on a finite element plastic calculation and a local approach to fracture models
- Fit Analytical Tensile Curve
 - Provide the coefficient of the Analytical Tensile Curve identified from experimental data

- Integration of Initeac module (Statistical modeling of IASCC)
 - Presentation of Initeac module with 12 test cases.
 - Integration the UserGuide into the presentation.
- Integration of Mibf
 - The Microstructurally Informed Brittle Fracture (MIBF) model takes into account the microstructure of the RPV steel.

□ UserGroup meeting

- Collective exercise
 - $_{\circ}\,$ The new presentation was presented
 - $_{\circ}\,$ Several case studies from the presentation were presented and tested
- on June 19th 2017 in EDF
- on June 22th 2018 in EDF
- on June 28th 2019 in Madrid

□ Soteria Training school on 3-7 September in Valencia

- Collective exercise
 - The new presentation was presented
 - Several case studies from the presentation were presented and tested

- Construction of the Graphical User interface to realize parametric Soteria studies :
 - Design of experiment \rightarrow Operational
 - 3 post-treatments → Operational
 - A table of input and output variable
 - A table with the minimum and maximum values of each input and output
 - A scatter plot showing the relationship between inputs and outputs
 - We were inspired by graphical user interface of **OpenTurns**
 - Phimeca and EDF developed a graphical user interface (GUI) of OpenTURNS. This interface is integrated into SALOME-MECA
 - **OpenTURNS** is a C++ library open source to treat uncertainties. It is co-developed by EADS IW, EDF R&D and PHIMECA Engineering.

Soteria hardening study

CHAIN

🕽 🗇 🗊 study_hardening_parametric - Per	spycace				
🔬 🗳 🗀 🏄 褬 📴 📲 💷	🤌 💵 🌳 😣 🏢 💡 📄				
Study Chain Data Dup	Graphics				
Medule Tree View	Modulo Holo				
Module free view	Module Help				
Modules	Module:				
▼ 🙀 RPV	RPV3.CONVOLVE				
▼ (m RPV3					
	Author:				
	S. Bugat, G. Adjanor				
RateTheory					
Trescendo	Version:				
📆 КМС	01.00.00				
📸 KMC_traps					
🕱 Expt	End Module:				
V 🕅 HARD	True				
CrowanBacon	litte				
	Short Decumostation				
	The CONVOLVE module allows the				
INTERNALS	user to select				
► 🖓 RPV_TOOLS	a cascade database and to convolve				
	the PKA spectrum into				
	Full Documentation				
Selected Modules					
Chain	2				
RPV3.IRRAD					
RPV3.CONVOLVE	-				
RPV3.LONG_TERM.Crescendo					
RPV3.HARD.OrowanBacon	T				

DATA

Data Tree View	User Profile
Object Val neutron_spectrum operating_conditions specter_path convolve cascade_description residual_energy_model Crescendo crescendo_parametrisation crescendo_path experimental_resolutions material_ontent material_metallurgy OrowanBacon bcc_crystal_elasticity oUTPUT_DATA integral_fluxes delta_CRSS raw_cascade_spectrum displacement_per_atom irradiated_microstructure pka_spectrum source_term annealed_cascade_signment	ue user user Kitons Actions Edit Dump Import Export Plot Short Documentation Full Documentation Value Value

Parametric hardening study

udy:	/home/gosset/PerfectStudy/studies/study har	dening pa	aramet	ric.prf			Ope
outs							
	Name	Sele	cted	Range	Units	Levels %	
1 i	idual_energy_model.beta		\$	0.779			
2 i	dual_energy_model.alpha	Off	:	5.67			
3 5	usion_model.monovacancy_migration_energy	On	\$	1.2	eV	03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.1	
4 5	usion_model.Zv	Off	\$	1.0			
5 5	usion_model.Zi	Off	\$	1.1		U	
6 5	scendo_parametrisation.solver_absolute_error	Off	\$	1e-14			
7 s	scendo_parametrisation.solver_relative_error	Off	\$	0.001			
8 t	erial_metallurgy.alloy_friction	Off	\$	10.0	Mpa		
9 t	erial_metallurgy.grain_size	Off	\$	0.01	mm		
10 t	erial_metallurgy.dislocation_density	Off	\$	10000000.0	cm/cm ³		
11	_crystal.atomic_volume	Off	\$	1894238688e-	m ³		
121	enertal lattice excamates	OFF		2.076	anachram		
utput	ts						
	Name	Value	Unit				Add
1 d	lelta_CRSS.Delta_CRSS_final_value 🗧	25.75 N	МРа				Remo

A table of input and output variables

		De laste		
<u>E</u> valuate 100%				
Tabl	e Min/Max Scatter plots			
28	sion_model.monovacancy_migration_er	delta_CRSS.Delta_CRSS_final_value		
29	1.13	17.0080466737		
30	1.14	18.1271433572		
31	1.15	19.2855866949		
32	1.16	20.4867050096		
33	1.17	21.731356635		
34	1.18	23.0206170629		
35	1.19	24.3612639126		
36	1.2	25.7545465866		
37	1.21	27.2094852036		
38	1.22	28.7182804925		
39	1.23	30.2986493037		
40	1.24	31.9431640964		
41	1.25	33.6608423692		
42	1.26	35.4447471458		
43	1.27	37.3025308185		
44	1.28	39.2336604079		
45	1.29	41.2408613047		
46	1.3	43.3141764959		

A table with min and max value of each

	<u>E</u> valuate		Ab
	100%		Res
gns of experiment			
able Min/Max Sca	tter plots		
Output delta_CF 🛟			
	Variable	Minimum	Maximum
outputs	delta_CRSS.Delta_CRSS_final_value	9.45178909549	43.3141764959
inputs at extremum	diffusion_model.monovacancy_migration_energy	0.85	1.3

A scatter plot between input and output

sical Mode	Designs of e	experiment					
			<u>E</u> valuate				Abort
			100%				Result
signs of e x Table Mi	in/Max Scatte	r plots					
	SCAT 45 40 - 35 - 25 - 25 - 20 - 15 - 15 - 10 - 10 -	TER PLOT mo	novacancy_mi	gration_energy	VS Delta_CRS	S_final_value	
		0.9	1.0 monovaca	1.1 ncy_migration_en	1.2 ergy	1.3	
Tiltle	SCATTER PLOT	monovacancy_m	igration_energy	/S Delta_CRSS_fina	al_value		
X-axis	diffusion_mod	el.monovacancy_	migration_energy	y			\$
Y-axis	delta_CRSS.De	elta_CRSS_final_va	alue				\$

Read

Technical work achieved

Dissemination of the platform

- New version of the platform with Salome-Meca 2018
 - For linux
 - The document "Installation instructions for the Soteria Platform" on the web-site of SOTERIA
 - For windows
 - By using a virtualBox
 - SciMotors platform (EDF)
 - Remote connection to a machine containing the Soteria Platforms

Future work

ENTENTE : EUROPEAN DATABASE FOR MULTISCALE MODELLING OF RADIATION DAMAGE

- Implementing MFront into the platform
- Performing quantitative sensitivity studies of the model based on variance analysis
- Maintenance of the platform

BOLTS : Lifetime prediction of baffle-former bolt cracking

- Implementing MFront into the platform
- Performing quantitative sensitivity studies of the model based on variance analysis
- Integration of Amitex (CEA)
- Integration of new modules

The SOTERIA Consortium

The SOTERIA Contacts

The SOTERIA Project Coordinator

Christian ROBERTSON CEA christian.robertson@cea.fr

The SOTERIA Project Office

Herman BERTRAND ARTTIC bertrand@arttic.eu

www.soteria-project.eu

This project received funding under the Euratom research and training programme 2014-2018 under grant agreement N° 661913.

