

1

SOTERIA FINAL WORKSHOP

WRAP-UP

27TH JUNE 2019

Speaker: Christian Robertson

SOTERIA Work Packages

WP2 – Highlights

□ T2.1: Flux effects on RPV and internals

- T2.1.1: Flux effects on RPV materials.
 - Base mat ANP-3 and ANP-10 Fluence: about 3x10¹⁹ cm⁻²
 - Welds ANP-6 and VFAB-1

Flux: 0.04 and 1.88x10¹² cm⁻²s⁻¹ Fluence: about 5.7×10^{19} cm⁻² Flux: 0.08 and 2.51x10¹² cm⁻²s⁻¹

27/06/2019

Deliverabe 2.1

Cluster composition

APT

TEM

Effect of <u>neutron flux</u> on the radiation-induced damage of RPV materials

- □ The **weld** materials have a **higher susceptibilities** than the base materials in terms of volume fraction of the defect clusters (×2 fluence means ×5 higher volume fraction).
- The vacancy concentrations and solute cluster sizes are higher for the high-flux than for the respective low-flux irradiation conditions. The same conclusion applies to both base and weld materials.
- The evolution of the clusters with the neutron flux can be described using a unique deterministic growth model.

WP3 – Highlights

Main technical highlights & related added value:

- The effect of materials heterogeneities on mechanical properties at initial and post-irradiated state has been shown
 - Clear effect of the removal position of the specimens in both BM and WM for various industrial alloys
 - Inhomogeneities in terms of composition, microstructure and mechanical properties are significant → data scattering that persist after irradiation, including in LTO conditions

WP3: further highlights

□ Initial material heterogeneities... (for WP5 models)

- Material microstructure:
 - Chemical composition of the solid solution (which determines the friction stress) APT
 - Average dislocation density (forest hardening) TEM
 - Grain size distribution and hierarchy (Hall-Petch effect) TEM, EBSD
- Second-phase inclusions:
 - Carbides (mechanical response, fracture models) ATP, TEM
 - Approximation in the established IASCC thresholds
- Irradiation defect dispersions:
 - Size, number density, dose dependent, irradiation-temperature dependence (physical models) – APT, TEM, SANS

WP4 – Highlights (I/II)

WP4 – Highlights (II/II)

Model : dose-dependent flow localization (high [He] at GB no intergranular crack initiation!)

Effect of rising dose on GB loading

dose-dependent non-cracking stress level identification

8

WP5-Highlights (I/II)

- Main technical highlights & related added value:
- T5.1
 - OKMC model applied to industrially relevant steels up to RPVrelevant fluence.
- T5.2
 - Crystal plasticity law identified for RPV and internals for unirradiated and irradiated materials.
- T5.3
 - Contribution of intergranular fracture and heterogeneities of carbide distribution to cleavage for outlier justification.
- T5.4
 - Integration of INITEAC into the platform.

1

WP5 – Highlights (II/II) – T5.3

Contraction de la fragilisation induite par l'irradiation / mesures non-destructives

27/06/2019

SOTERIA

THANKS FOR YOUR ATTENTION

27/06/2019

SOTERIA

11