

J. Chen, M.A. Pouchon :: NES / LNM :: Paul Scherrer Institute

Effects of Helium on IASCC Susceptibility

SOTERIA FINAL WORKSHOP

Miraflores de la Sierra | 25-27 June, 2019

Contributors

PSI:

- Ignasi Villacampa
- J. Chen
- P. Spätig
- H.P. Seifert

CEMHTI/CNRS:

- M.F. Barthe
- Cyclotron operator team

- o Introduction
- o Methodology
- o Validation of miniaturized sample
- Bubble evolution after post He-implantation annealing
- o Helium Hardening
- o Helium effects on IASCC
- Summary, conclusions & perspectives

- o Introduction
- o Methodology
- o Validation of miniaturized sample
- Bubble evolution after post He-implantation annealing
- o Helium Hardening
- Helium effects on IASCC
- Summary, conclusions & perspectives

What is IASCC?

By definition: IASCC is actually inter-granular SCC assisted by irradiation

SCC morphology (316 AuSS)

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 7/45

Baffle former bolts (BFB):

PAUL SCHERRER INSTITUT

Cold worked 316SS after service in PWR conditions

Good correlation between IGSCC susceptibility & He concentration evolution

- For given dpa, FBR-irradiated SS show much lower IASCC susceptibility than PWR-irradiated SS in spite of similar irradiation hardening and GB segregation
- He effect might be one of the main reasons for this large difference
 PWR ~ 10 appm He/dpa >> FBR ~ 0.1 appm He/dpa

Selected studies on helium effects

- Potential concern for some PWR internals & LTO > 50 a
- SA (baffle formers) and CW SS (baffle bolts)

Approach

Separation of He and displacement damage effects

 \rightarrow He implantation (100 to 1000 appm, 0.016 to 0.16 dpa only)

 Simulation of He bubble structure in baffle bolts & variation of He bubble size and GB He bubble coverage

 \rightarrow post implantation annealing study

 \rightarrow critical He concentrations or GB coverage for IG (IA)SCC

 Characterization of IG (IASCC) susceptibility by SSRT tests with smooth sample in hydrogenated HTW

 \rightarrow fracture & deformation mode by SEM & TEM

- o Introduction
- o Methodology
- o Validation of miniaturized sample
- Bubble evolution after post He-implantation annealing
- o Helium Hardening
- Helium effects on IASCC
- Summary, conclusions & perspectives

Methodology – Materials & sample									JE	RIA					
316 L															
Cr	Ni	Мо	Mn	Si	Со	N	V	С	Р	W	AI	Ti	Sn	Nb	S
17.61	12.32	2.379	1.768	0.466	0.164	0.0673	0.036	0.0275	0.024	0.023	0.018	0.007	0.006	0.003	<0.003

SA at 1050°C for 30' quenched in water

average grain size 52 μm

Tensile specimens (ASTM standard)

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 13/45

Methodology - Helium implantation

PAUL SCHERRER INSTITUT

Methodology - Mechanical testing

Water loop Diagram

PAUL SCHERRER INSTITUT

Hydrogenated water conditions (HWC) with 2.2 ppm H_2

Methodology - Mechanical testing

Water loop device located at Hot lab at PSI

- o Introduction
- o Methodology
- o Validation of miniaturized sample
- Bubble evolution after post He-implantation annealing
- o Helium Hardening
- o Helium effects on IASCC
- Summary, conclusions & perspectives

Representative engineering stressstrain curves

PAUL SCHERRER INSTITUT

Overview of engineering stressstrain results

Sample type	Temperature (°C)	Environment	Rp _{0.2%} (MPa)	UTS (MPa)	US	RA	
Miniaturised (5)	25	RTA	281	558	0.41	0.82	
Standard (4)	25	RTA	290	577	0.41	0.83	
	REL. ERROR RTA		3.0%	3.3%	0.85%	1.42%	
Miniaturised (7)	288	HTA	216	500	0.29	0.79	
Standard (5)	288	HTA	204	509	0.32	0.70	
	REL. ERROR HTA		5.9%	1.7%	8.2%	12%	
Miniaturised (1)	288	NWC (500 ppb O ₂)	224	499	0.34	0.71	
Standard (1)	288	NWC (500 ppb O ₂)	208	527	0.38	0.68	
	REL. ERROR NWC 500 ppb O ₂		7.8%	5.4%	8.9 %	5.1%	
Miniaturised (2)	288	HWC (2.2 ppm H ₂)	-	478	0.32	0.67	
Standard (2)	288	HWC (2.2 ppm H ₂)	234	501	0.29	0.51	
	REL. ERROR HWC		-%	4.6%	11%	30%	
Miniaturised (1)	288	NWC (8 ppm O ₂)	192	498.8	0.29	0.72	
Standard (2-3)	288	NWC (8 ppm O ₂)	203	512	0.38	0.67	
	REL. ERROR NWC	8 ppm O ₂	5.3%	2.6%	24%	6.4%	

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 20/45

Fracture surface

20 µm

60 µm

21.200

Miniaturized sample

Standard sample

- o Introduction
- o Methodology
- Validation of miniaturized sample
- Bubble evolution after post He-implantation annealing
- o Helium Hardening
- Helium effects on IASCC
- Summary, conclusions & perspectives

Bubble distribution after PIA (1000 appm)

at 750°C

at 900°C

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 24/45

PAUL SCHERRER INSTITUT

Limited of GB coverage, hence limited GB weakening

Bubble growth mechanism during PIA

Migration & Coalescence

Ostwald Ripening (dissociation)

 $\bar{r}_{\rm b}^n \propto D_{\rm X} c_{\rm He} t$

surface diffusion (sd), n=5-6 volume diffusion (vd) vapor transport through the bubble (g) $ar{r}_{
m b}^2 \propto kTD_{
m He}K_{
m He}t$ Helium dissociation $ar{r}_{
m b}^3 \propto (\gamma\Omega/kT)D_{
m V}t$ Vacancy dissociation

Helium bubble evolution

The thermal activation analysis shows that the He bubbles grow according to the **dissociative mechanism (Ostwald Ripening)** both, for GB and grain interior. This mechanism occurs **at least 300°C below** the one reported in RT implantation.

	Cold implant.	Hot implant.	Grain interior	Grain boundar	y
E _a (eV)	0.25	1.03	1.07	1.11	•
Q (eV, = E _a n)	1.26 - 1.51	2.06 - 3.07	2.14 - 3.21	2.22 - 3.33	
Mechanism	Surf. diffusion	Dissociation	Dissociation	Dissociation	

- o Introduction
- o Methodology
- o Validation of miniaturized sample
- Bubble evolution after post He-implantation annealing
- o Helium Hardening
- o Helium effects on IASCC
- Summary, conclusions & perspectives

Helium bubble hardening

Models for YS increase

1. DBH
$$\Delta \sigma_{y} = \alpha_{i} M \mu b (N_{i} d_{i})^{1/2}$$

2. FKH $\Delta \sigma_{y} = \alpha_{i} M \mu b r_{i} (N_{i})^{2/3}$
3. BKS $\Delta \sigma_{y} = \alpha_{i} M \mu b (N_{i} d_{i})^{1/2} \frac{1}{2\pi} \left[\ln \left(\frac{l}{b} \right) \right]^{-1/2} \left[\ln \left(\frac{D'}{b} \right) + 0.7 \right]^{3/2}$

Tensile & microstructural data

- α hardening coefficient \simeq ?
 - M Taylor factor $\simeq 3$
- μ shear modulus $\simeq 76~\text{GPa}$
- b Burgers vector $\simeq 0.255$ nm
 - N_i Density of defects
 - di diameter of defects
 - ri radius of defects
 - D' Effective diameter

	1000 a	appm	300 appm				
	750°C	1000°C	750°C	850°C	950°C		
Delta YS tensile (MPa)	123	24	45	37	29		
AVG. Radii (nm)	1.8	27.5	1.4	3.9	17.6		
AVG. Density (bubble/nm ³)	5.6x10 ⁻⁵	1x10 ⁻⁷	2.6x10-5	1.6x10 ⁻⁶	1x10 ⁻⁷		

We can determine the hardening coefficient (α)

Dispersed Barrier Hardening

DBH Model

$$\Delta \sigma_{v} = \alpha_{i} M \, \mu b (N_{i} d_{i})^{1/2}$$

Friedel-Kroupa-Hirsch

FKH Model

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 31/45

Bacon Kocks Scattergood

BKS Model

- o Introduction
- o Methodology
- o Validation of miniaturized sample
- Bubble evolution after post He-implantation annealing
- o Helium Hardening
- Helium effects on IASCC
- Summary, conclusions & perspectives

RIS on Grain Boundary

GB RIS with FEI TALOS F200X (200 kV)

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 34/45

SSRT to SA + 1000 appm samples

1000 appm with/out HT

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 35/45

SSRT to CW + 1000 appm samples

CW with/out 1000 appm

PAUL SCHERRER INSTITUT

Surface of the samples tested in different environment and material conditions

HTW SA

HTW He_{300 appm}

HTW He1000 appm

Fracture investigations

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 39/45

Discussion

- o Introduction
- o Methodology
- o Validation of miniaturized sample
- Bubble evolution after post He-implantation annealing
- o Helium Hardening
- Helium effects on IASCC
- Summary, conclusions & perspectives

Summary, conclusions & perspectives I

- Results of SSRT of 316L sample in air and different hot water (different chemical water conditions) for standard and miniaturized flat dog-bone samples show that the mechanical properties and fracture mode are almost identical for both sample types.
- Optical microscope and SEM observations show 100% ductile fracture mode after SSRT test for RT and HT in air, normal hot water conditions but 2% cleavage appearances at hydrogenated hot water condition (288°C)
- □ Similar bubble size & distance in grain interior and on GB. PIA increases bubble size, but does only moderately increase GB He bubble coverage.
- □ The activation energy of bubble evolution for GB and Matrix shows that in both cases the bubble grows with dissociative mechanism (OR). This mechanism occurs 300°C below the one reported in RT implantation. The coarsening mechanism might depend on both annealing T and bubble size.
- □ The hardening coefficient increases with the bubble size in the FKH and DBH models but not in BKS model. This suggests to use BKS for calculating the He hardening contribution.
- □ Homogenized He implantation in SA and CW at 300°C up to 1000 appm results in very limited RIS only (only Mo).
- The deformation microstructure clearly changes from dislocation cells to random distribution of dislocations in SA & He implanted samples, respectively. The formation of deformation bands is enhanced in as-implanted condition.

Summary, conclusions & perspectives II

- Accelerated SSRT (10⁻⁶ 10⁻⁷ s⁻¹) in HTW with 2.2 ppm DH at 290 °C did not induce IG(IA)SCC initiation in smooth tensile specimens with homogenized helium implantation at 300°C up to 1000 appm (<0.16 dpa) in SA, CW and PIA (≤ 1000°C) conditions.</p>
- However, the mechanically dominated short-term SSRT may be too short to exclude SCC initiation and could overlook other more time-consuming (e.g. corrosion-dominated) precursor and initiation processes.
- □ These results suggest that a helium concentration ≤1000 appm alone cannot induce IASCC, therefore there has to be some synergy between irradiation damage and helium concentration.
- □ The formation of irradiation-induced dislocation channels (at high dose) with high-stress concentration on grain boundaries, together with the current helium bubbles grain boundary coverage (~10%), could promote intergranular cracking.
- □ Further evaluations should thus include samples with high displacement damage (besides of high helium concentration) and crack growth experiments with pre-cracked specimens.

SOTERIA - Final Workshop, Miraflores de la Sierra, 25-27 June, 2019, Effects of He on IASCC susceptibility J.Chen & M.A. Pouchon, PSI - Page 44/45

This work was supported by

- Euratom research and training program 2014-2018 under
 Grant Agreement No 661913 (SOTERIA)
- Swissnuclear
 - Thank you for your attention

