

EFFECT OF MATERIALS HETEROGENEITIES ON MICROSTRUCTURE AND MECHANICAL PROPERTIES AT IRRADIATED STATE

Authors

Frank Bergner, Hans-Werner Viehrig (HZDR) Contributors of Task 3.3 (CIEMAT, CNRS, Framatome, NRI, VTT)

This project received funding under the Euratom research and training programme 2014-2018 under grant agreement N° 661913

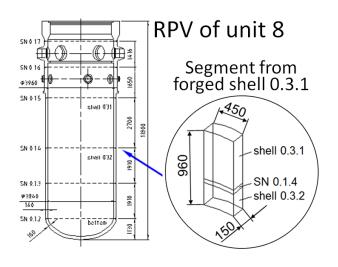
Content

□ Material FZD-4 (HZDR + CIEMAT)

- basic information, initial microstructure and properties
- irradiation-induced microstructure and property changes

□ Material EDF-4 (CNRS)

- basic information, initial microstructure and properties
- irradiation-induced microstructure


□ Materials NRI-1/2 (NRI)

- basic information, initial microstructure and properties
- irradiation hardening
- Materials ANP-3/4 + VTT-1/WM1 (VTT + Framatome)
 - basic information
 - MC and cleavage initiation sites for irradiated condition

FZD-4: basic information (1)

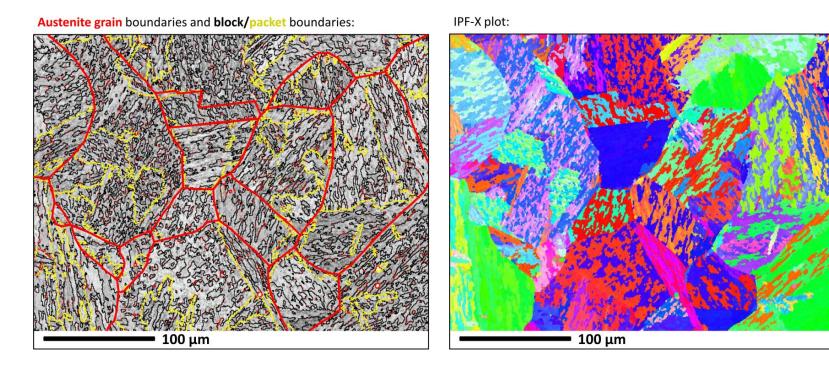
- NPP Greifswald, RPV of Unit 8, VVER440-type base metal 15Kh2MFAA
- RPV of Unit 8 completed in 1989 (Škoda production), noncommissioned
- Identical in construction with operating NPPs at Dukovany, Bohunice, Mochovce, Paks

Composition of 15Kh2MFAA forged ring 0.3.1 (wt. %)

	С	Si	Mn	Cr	Ni	Мо	Cu	Р	V
HZDR analysis	0.15	0.30	0.45	2.86	0.10	0.79	0.05	0.008	0.31
Documen tation	0.16	0.25	0.49	2.82	0.09	0.72	0.05	0.01	0.29

FZD-4: basic information (2)

- Irradiated at HFR Petten (LYRA 9) and KFKI Budapest (BAGIRA - Budapest Advanced Gas-cooled Irradiation Rig with Aluminium structure)
- Reported irradiation conditions:

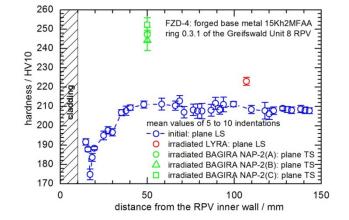

Irradiation	Neutron fluence	Neutron flux	Irradiation	Irradiation time
experiment	(10 ¹⁹ cm ⁻²)	(10 ¹² cm ⁻² s ⁻¹)	temperature	(full power days)
	(E > 1 MeV)	(E > 1 MeV)	(°C)	
Lyra 9	2.6	1.1	270	272
Bagira C	11.7	34.8	290	49
Bagira A	18.2	54.1	290	49
Bagira B	20.8	61.9	290	49

FZD-4: initial microstructure (1)

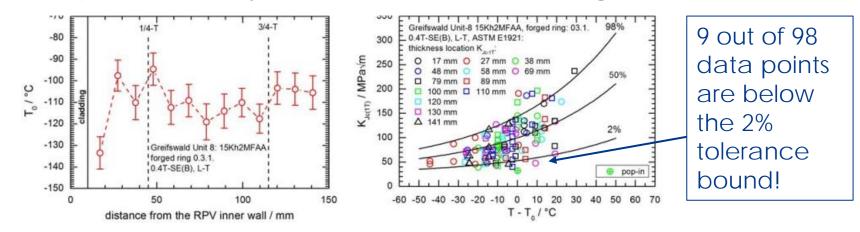
- EBSD reveals a bainitic microstructure with former austenite grains (~110 µm), packets (~30 µm) and blocks (9 µm)
- EBSD provides details about the variant selection during the bainitic transformation

FZD-4: initial microstructure (2)

- Hierarchically organized precipitates and inclusions that differ in their size and density over several orders of magnitude
- Location is related to bainitic grain structure

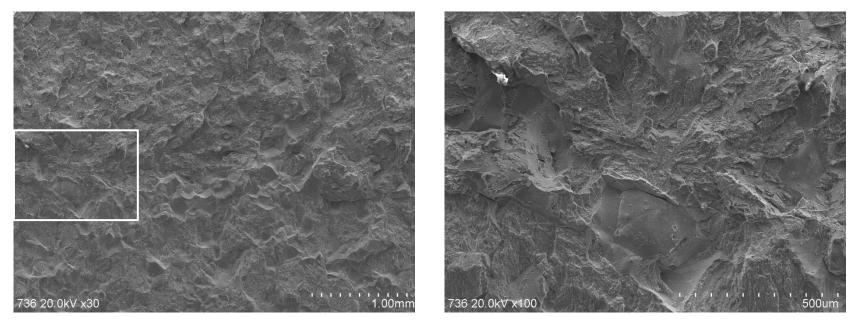

	Туре	Mean size (µm)	Number density (cm ⁻³)	Preferred location
	Very small V-rich (TEM)	0.02	2.7E+14	Matrix
Mo precipitates	V-rich (TEM)	0.14	3.8E+13	Packet/block boundaries
MnS inclusion	Cr-rich (TEM)	0.2	1.0E+13	Packet/block boundaries
	Mo-rich (SEM)	0.4	1E+10	γ-grain boundaries
10 μm	Coarse MnS (SEM)	8	3E+06	-

□ CIEMAT: Spatial variations of dislocation density, mean value $\rho = 2.6E+14 \text{ m}^{-2}$


FZD-4: initial properties (1)

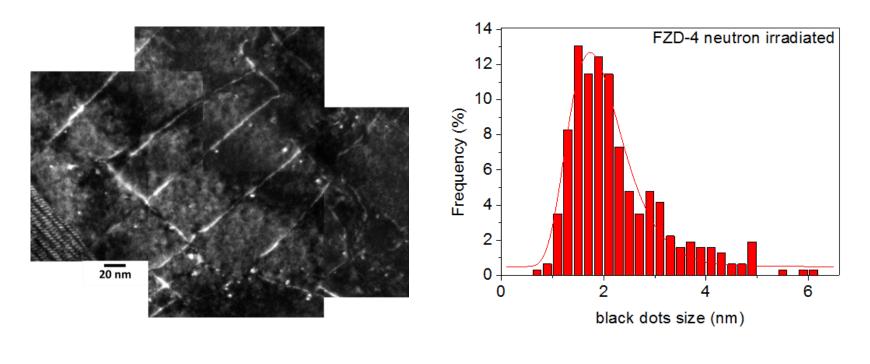
Through-thickness distribution of hardness

Through-thickness distribution of MC-T₀ (left) and temperature-adjusted MC for all data (right)



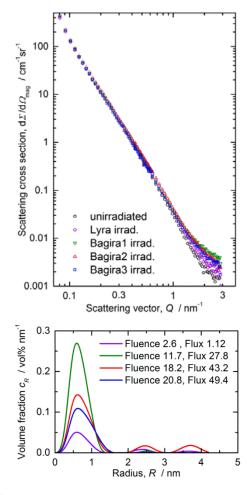
FZD-4: initial properties (2)

Possible reason for large scatter: Local appearance of intergranular fracture (23% fatigue crack, 11% cleavage crack)

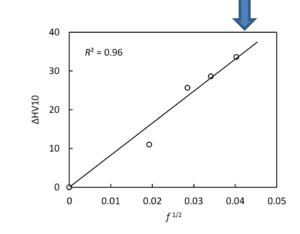


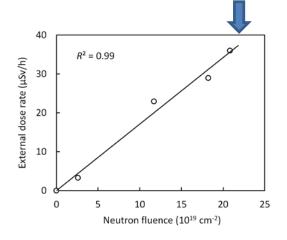
- Consistent with AES evidence (CIEMAT): P enrichment at GBs found at intergranular fracture planes
- Consequence: MC approach not applicable \rightarrow multimodal MC

FZD-4: irradiated microstructure (1)


□ TEM (CIEMAT)

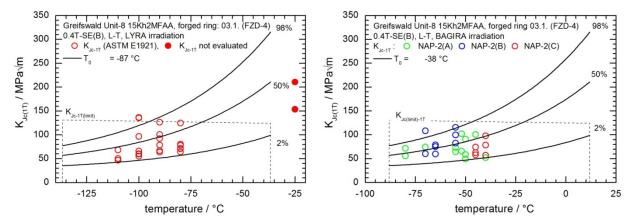
- BAGIRA (B) irradiation: 20.8E+19 cm⁻² (E > 1 MeV), 290°C
- Dislocation loops observed, mostly closely to line dislocations
- Mean size 1.9 nm, Number density 2E+15 cm⁻³ (g=110)
- No/very few defects detectable for RPV steels at lower fluences




□ SANS (HZDR, beamline V4 at HZB Berlin)

Irradiation experiment	Neutron fluence	Volume fraction	Mean radius	A-ratio	Vickers hardness,	ΔHV10
	(10 ¹⁹ cm ⁻²)	(vol%)	(nm)	(-)	HV10 (-)	(-)
unirradiated	0	0	-	-	218.5 ± 1.9	0
Lyra	2.6	0.037 ± 0.003	0.83 ± 0.06	1.5 ± 0.2	229.5 ± 3.9	11 ± 5
Bagira (C)	11.7	0.162 ± 0.005	0.76 ± 0.07	2.0 ± 0.2	252.2 ± 3.7	34 ± 5
Bagira (A)	18.2	0.116 ± 0.005	0.78 ± 0.05	3.0 ± 0.5	247.2 ± 3.8	29 ± 5
Bagira (B)	20.8	0.081 ± 0.004	0.78 ± 0.04	2.0 ± 0.2	244.2 ± 5.3	26 ± 6

- BAGIRA irradiations: Decreasing volume fraction at increasing fluence → Contradiction
- Reason: Exp. error? No! // Mix-up of samples? No!



FZD-4: irradiated properties

□ MC for LYRA (left) and BAGIRA (right) irradiations

Data scatter for irr. conditions are smaller than for the initial condition

Irradiation experiment	Neutron fluence (10 ¹⁹ cm ⁻²) (E > 1 MeV)	Volume fraction (vol%)	ΔHV10 (-)	Δ <i>Τ</i> ₀ (K)	
Lyra 9	2.6	0.037	11	24	
Bagira C	11.7	0.162	34	97	
Bagira A	18.2	0.116	29	80	۱ŀ
Bagira B	20.8	0.081	26	61	

MC T₀ shift also decreases with increasing fluence

→ any material inhomogeneity can be excluded as reason, because samples were taken from random positions

FZD-4: conclusions

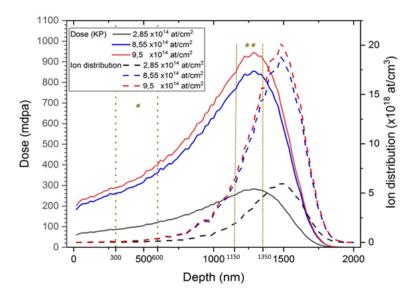
- In the initial condition, large scatter of fracture toughness (MC not applicable) and spatial variations of the fracture mode (inter- or transgranular) were observed.
- In the as-irradiated condition, the scatter is reduced, intergranular fracture occurs as well.
- The reduction of scatter can be rationalized by the fact that smaller precipitates (available at higher number) may trigger crack initiation for the irradiated condition.
- □ Reductions of volume fraction, Δ HV10 and Δ *T*₀ at increasing fluence were observed for BAGIRA. A number of potential reasons have been excluded.

EDF-4: basic information (1)

- EDF-4 is a 16MND5-type RPV steel taken from a shell ring of an RPV manufactured by Creusot-Loire
- Half-Charpy specimen of this material was provided by EDF
- CNRS contribution: comparison between chemical heterogeneities (microsegregations resulting from the solidification versus non-segregated areas)
- Methods: APT and TEM on samples in as-received and ion-irradiated conditions

Composition:

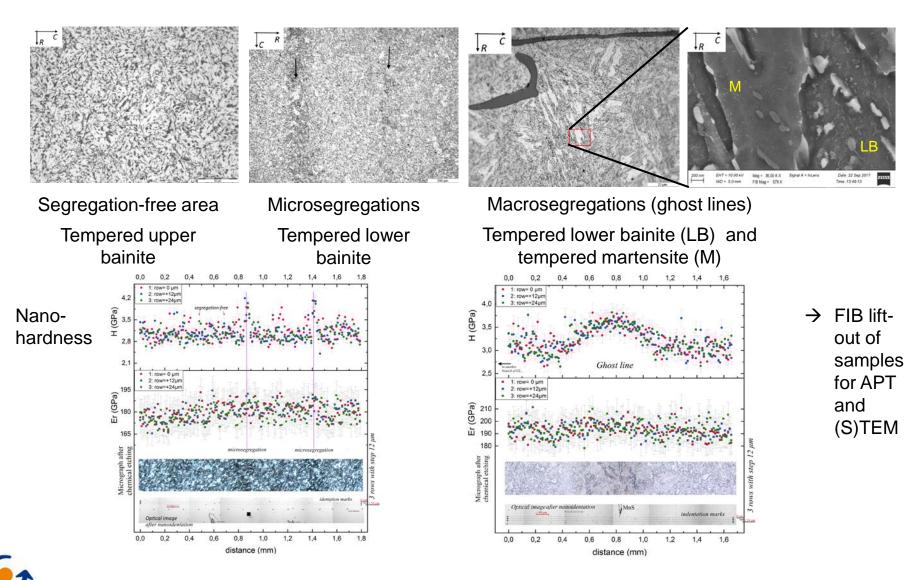
Material	Range	С	S	Ρ	Si	Mn	Ni	Cr	Мо	V	Cu	Со	AI
	min	0.00	0.04	0.019	0.42	1.27	0.65	0.00	0.29	0.0087	0.04	0.010	0.045
EDF4	max	0.69	0.01	0.023	0.45	1.34	0.66	0.20	0.30	0.010	0.61	0.019	0.045



Ion irradiation at Jannus

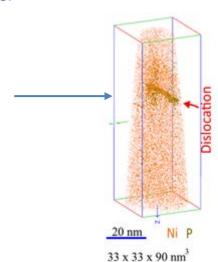
N	Э.	Sample	lon	Energy (MeV)	Fluence (10 ¹⁴ cm ⁻²)	Flux (10 ¹⁰ cm ⁻² s ⁻¹)	Time (min)	Dose at APT analyses depth (dpa)	Dose rate (10 ⁵ dpa.s ⁻¹)	Т (°С)
1		A239			2.85	1.6 ± 0.4	130	~0.1	1.3	
	*	4U2 2	_		0 55	F	206	0.26-0.34	1.7	400
2	**	4H3.3	Fe ³⁺	5	8.55	5	296	0.78-0.85	4.5	
3		4H3.3			9.5	4.4	360	0.28-0.36	1.4	350

SRIM calculations of the depth profiles of dpa and injected interstitials



EDF-4: initial microstructure

21/06/2019



SOTERIA Final Workshop | 25-27 June 2019 | Miraflores de la Sierra

EDF-4: irradiated microstructure

Occasional appearance of

- NiSiMnP-enriched cluster in ion-irradiated sample from segregation-free area
- MnNiSiMoCuP-enriched cluster in ion-irradiated sample from microsegregation area
- All ion-irradiated samples
 - P segregation to dislocations and GBs
 - Enrichment of dislocations with Mn, Ni and Si.
- No clear differences in the irradiation response between segregated and segregation-free areas were found.

TFRIA

NRI-1 and -2: basic information

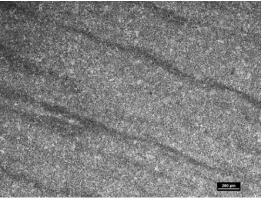
NRI-1

- □ ASTM A 533B type IAEA reference steel known as JRQ,
- □ 160 t Ingot rolled into plates 225 x 2,500 x 3,000 mm,
- Final heat treatment: normalized at 900 °C, quenched from 880 °C, tempered at 665 °C for 12 hours.

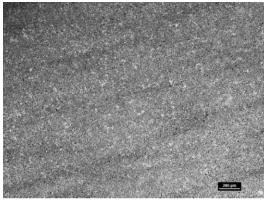
 C
 Mn
 P
 S
 Si
 Ni
 Cr
 Mo
 Cu
 V
 Al

 5JRQ
 0.18
 1.47
 0.019
 0.004
 0.24
 0.66
 0.12
 0.5
 0.15
 0.007
 0.014

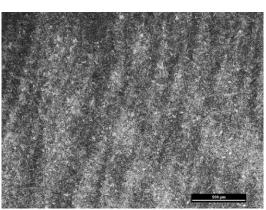
NRI-2


- 15Kh2NMFAA type RPV steel for the beltline region of WWER-1000,
- Cylindrical ring, thickness 190 mm,
- □ Final heat treatment: normalized at 950-970 °C, quenched from 910-930 °C, tempered at 660-680 °C, annealed 640 °C.

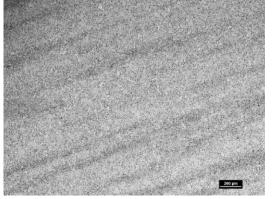
 C
 Mc
 Si
 S
 P
 Cr
 Ni
 Mo
 V


 15Kh2NMFAA
 0.15
 0.46
 0.22
 0.012
 0.008
 1.54
 1.34
 0.53
 0.12

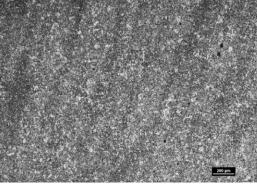
NRI-1 and -2: initial microstructure


□ NRI-1 (JRQ)

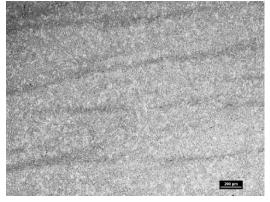
Layer 1 (5 mm depth)



Layer 7 (113 mm depth)



Layer 13 (220 mm depth)

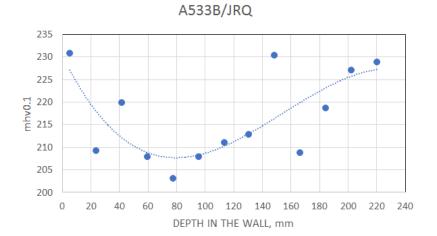

□ NRI-2 (15Kh2NMFAA)

Layer 1 (5 mm depth)

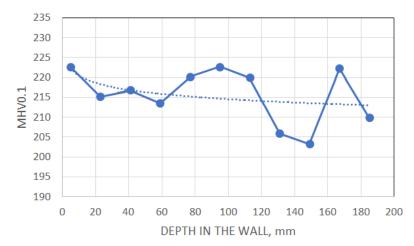
Layer 6 (95 mm depth)

Layer 11 (185 mm depth)

NRI-1 and -2: initial properties



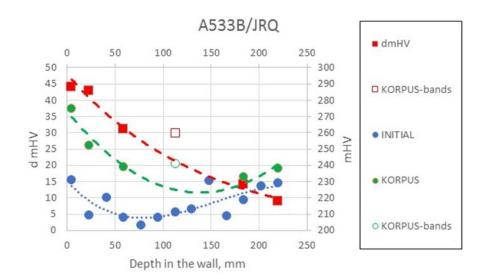
JRQ


- characteristic throughthickness profile of HV0.1
- Segregation bands (270 HV0.1) harder than base (210 HV0.1)

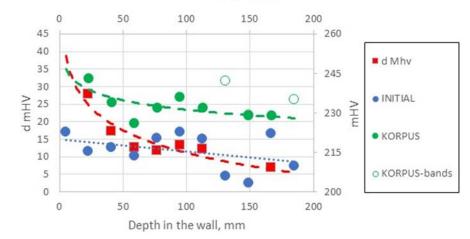
15Kh2NMFAA

• HV0.1 approximately const.

15Kh2NMFAA


NRI-1 and -2: irradiation hardening

JRQ


- Irradiation-induced increase of HV0.1
- ΔHV0.1 almost equal for segregation bands and segregation-free area

 Irradiation-induced increase of HV0.1

15Kh2NMFAA

UTERIA

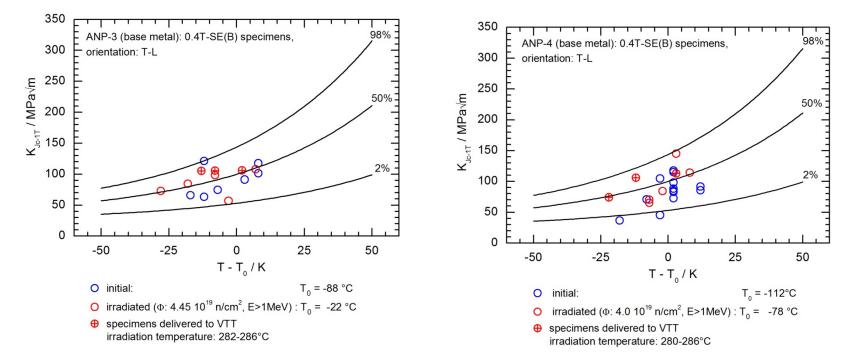
EDF-4, NRI-1, NRI-2: conclusions

- Segregation bands clearly identified
- Irradiation-induced nanofeatures and hardness increase observed
- Segregation-free areas, microsegregations and macrosegregations
 - exhibit different microstructures and hardness
 - do not exhibit differences in the irradition response
- Differences in the fracture behaviour (irr. versus unirr.) have not been addressed but are expected

ANP/VTT: basic information (1)

□ Four irradiated materials were investigated:

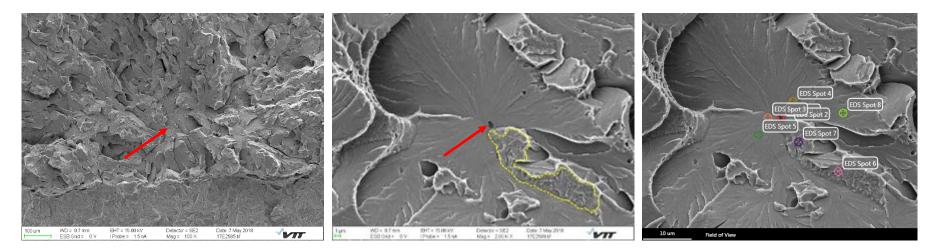
- PWR 22NiMoCr3-7 base materials ANP-3 and ANP-4 (Klöckner)
- VVER-440 10KhMFT weld materials VTT-1 and VTT-MW1


	С	Si	Mn	Р	S	Cr	Мо	Ni	AI	Со	Cu
ANP-3	0.23	0.20	0.70	0.015	n.s.	0.44	0.79	0.98	n.s.	n.s.	0.12
ANP-4	0.182	0.234	0.926	0.005	0.005	0.408	0.478	0.886	0.020	0.012	0.062
VTT-1	0.04	0.6	1.06	0.02	0.026	1.57	0.46	0.13	n.s.	n.s.	0.19
VTT-MW1	0.05	0.4	1.2	0.038	0.011	1.4	0.49	0.14	n.s.	n.s.	0.17

- □ Fractographic examination focused on
 - finding the primary cleavage initiation site
 - identifying any microstructural features or heterogeneities that may have promoted fracture in the irradiated condition.

ANP/VTT: basic information (2)

□ ANP samples investigated: ●


Optical, fractography, SEM-EDS performed at VTT

ANP/VTT: initiation sites (1)

ANP-3

- left: overview (cleavage initiation site marked)
- middle: cleavage initiating particle (marked)
- right: spots for SEM-EDS analysis

ANP/VTT: initiation sites (2)

Material	Specimen	Cleavage initiation site	Type of initiating particle
ANP-3	BA28	Primary Initiation site Not visible, as it locates under a ledge	No visible particle
ANP-3	BA32	Primary initiation site particle	Cr-, Mn-, Mo- (+ S), Co- and O-rich particle Cr, Mn, Co = half A Mo (+ S), O = half B
ANP-3	BA35	Primary initiation site particle	Probably a Mn-, Cr-, Mo- (+ S), Al-, O-rich particle half A only no particle on half B
ANP-4	2BTL3	Primary initiation site	No clear particle
ANP-4	2BTL9	Primary initiation site particle	Probably a Mn-, Mo- (+ S), S-, Cr-, C- and O- rich particle Mo (+ S), Cr, Mn, O = half A Mo, S, Cr, Mn, O = half B
ANP-4	2BTL14	Primary initiation site	No particle visible
VTT-1	L22_17I209	Initiation site	No particle visible
VTT-1	L22_18I204	Initiation site Particle	Al-, Si-, S-, Ti-, Mn- and O-rich particle
VTT-1	L24_17I204	Initiation site Particle	Al-, Si-, Ti-, Mn- and O-rich particle
VTT-MW1	132M	Initiation site Particle	Al-, Si-, Ti-, V-, Mn- and O-rich particle
VTT-MW1	172	Initiation site Particle	Al-, Si-, Ti-, Mn- and O-rich particle
VTT-MW1	311	Initiation site Particle	Si- and O-rich particle

ANP/VTT: conclusions

- Initiation sites identified and distance from the sample side face statistically evaluated
- □ ANP-3 and ANP-4
 - in three out of 6 cases visible particles enriched with Cr, Mn, Mo (S), Al, O
 - initiating particles might be MnS or Cr-, Mn-, Al-oxides or combinations of both
- VTT-1 and VTT-MW1
 - initiating particles typically AI-, Si-, Ti-, Mn-, O-rich
- Initiation at carbides was not reported

Task 3.3: lessons learned

- Six partners eight materials four approaches many pieces of new insight
- Initial inhomogeneity may be
 - alleviated by irradiation (scatter of MC decreased)
 - retained after irradiation (segregated and segregation-free areas exhibit similar irradiation response, IGF)
 - intensified by irradiation (no example found \rightarrow good message)
- Remaining gaps (personal view)
 - systematically correlate outliers in MC curves with local microstructure (segregated or segregation free-areas)
 - systematically compare initial distribution of coarse particles with type of particles initiating cleavage