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DOSE-DEPENDENT NANO-FEATURES AND THEIR EFFECT ON INTER-GRANULAR
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OUTLINE

- Previous findings, up to PERFORM&0 (up to 2012)
- Subsequent sub-grain modelling developments (2012- )
- Observations and poly-crystalline model (SOTERIA 2015-2019 )
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Post-irradiation plasticity mechanisms

FEG-SEM
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Iradiation defect microstructure
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Deformation: in the form of shear bands
i.  Dislocation pile-ups: Lpy; « D,

T ii. Secondary shear bands and then
¥ : gradual band broadening

C.Robertson (1998), 3 dpa, Kr ions
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Shear band dislocation substructure

/ b Journal of Nuclear Materials 380 (2008) 22-29
50 nm
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Along [10-1]

X cleaning dislocations
X piled-up dislocations

25/06/2019 X arrested dislocations

Leading dislocations
Dislocations with helix/jogs

Clear and broaden channels

Trailing dislocations
Straight piled-up dislocations

“Push” the leading dislocations

At the channel periphery:

accumulation of coarse loop debris
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Partial summary... (up to P60)

- Slip steps are fewer and smaller, after irradiation < strain localization
- Loop-depleted channel (or clear band) is merely a particular shear-band type

- Channels include dislocation pile-ups (unlike in BCC, where tangles form),
generating a long-range, out of plane stress field

- Channel (shear band) thickness and spacing controls the stress concentration
magnitude at the GBs and hence, crack initiation susceptibility thereof

W. Karlsen, VTT
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Tensile test B7, specimen "nec4” Tensile test B7, specimen "nec4”
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Cross-slip: inferaction with defects

Next step: include the ubiquitous cross-slip mechanism
Interaction with 111 & 111 loops

NUMODIS = MD validated: Journal of Nuclear Materials 460 (2015) 37-43 CrOSS-SIipped arm

/

A

Y. Li, C. Robertson, Model. Simul. Mater. Sci. Eng. 26 (2018) 055009
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Cross-slip: inferaction with defects

Stress controlled simulations
l,: segment length in primary SS
|, + L =300 nm

Ip<=100nm
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& |n presence of cross-slip: interaction strenght < loop strength
& Cross-slip provides an easy path to overcome the defects

25/06/2019 SOTERIA



Cross-slip: shear band multfiplication

Regular inter-channel spacing <«» secondary
channel in X-slip planes: [Yao 2005]

Secondary channels develop wherever CS
probability is high, i.e. wherever effective defect

interaction strength is minimal (path of least K. Gururaj etal, Phil. Mag. 95 No.12 (2015) 1368-1389
interaction) I
II
Stress
I 5 . 3 mapping:
x5 é Tpriml Tcs
g) 2
111 1A%
25/06/2019 Shear band spacing scales with internal stress field characteristic distance 9



0

1

(Uz /b)

15
<15

00 loops
1022 loops/m3 (~ 0.5 dpa)

1ON

lat

»
=

4x10-3

=1

Shear band spacing




(qo D
-
O
——
O
5
L
Q
@),
£
O
O
@]
w
-
-
O
QO
m
O
C
V)

- 25

- 20

15

Shear band spacing « d »

10

316L-8

Pile-up length (um)

/

o« Grain size

ied

-

I11/Tau_appl

Tau_

11

o)

(vs -7p)+ At (irradiation-dose, ¢

~y
~y

f(dy), A(SFE)

25/06/2019



Shear band thickness prediction ¢

Dislocation can glide inside shear
bands wherever verifies:

Band thickness

h,
§ § 8

§'s 5 mmp
S § §§§§ 8§ §

Tapp + Tpu(band) > Tdefect

How to chose these different terms?

= Applied stress level 1, (tensile testing data or hardening theory)
= 1, (inter-band long pile-ups, analytical H&L model)
= Obstacle strength 14, ¢c; (MD & continuum S&B theory).

= Both 14, & 1opsrelate to the irradiation conditions
« Defect cluster size

» Defect cluster number density

« Other hardening mechanisms?

[W. Karlsen, VTT, 2006]
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Application to poly-crystals

l Get local grain size R from orientation matrix G |

+

| Calculate the macroscopic slip direction & normal of slip plane

| Choose the max among Schmid factor of 12 slip systems |

v

| Calculate the tensile stress & obstacle stress |

¥

l Compute the distance inter band & number of bands in a grain

.:::;j'_::"r;b of plansz 2?.'"_'_::::::—155

NO
X

m_:z:jj:}ﬁh of planss lTr

‘ Stress of PU=PU1 ‘ MO ‘ Stress of PU=PUL+PUZ2+PU3

I Stress of PU=PU1+PU3 |

a»l«q

I Stress concentration factor & Angle factor

Damage factor include stress
concentration and crystallographic
orientation contributions.

| Output damage factor & derivative
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Application to poly-crystals

3 Lone to zone variations of
GB loading
iy 12 | y g ' . ' zone C
1 zone A
zone B
i zone D |
;5 ’ 1 ? dgmagcf:cmr : ° E i
! Effect of rising dose on
| GB loading
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Comparison with observation (P+ imradiation)

NAGH200 X HV: 20.0 kU WD:14.3 min Px: 0.348m =

[B. Tanguy, DEN/DMN/SEMI]

Irradiated 316L steel p+ 2dpa/350°C, 107 s up to €, = 4% in autoclave (primary water)
Applied stress considering the hardening effect: 684MPa, Area: 411.02 pm X 298.92um
Mean Defect cluster size: 13.8nm, defect number density 3.6e22 m-3
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Comparison with observation (P+ iradiation)

"~ Most likely to crack nucleation sites: GB
7 presenting the largest plastic strain contrast.

He, Johnson, Was, Robertson
Acta Materialia 138 (2017) 61-71

« Damage threshold identification
(quantitative evaluation)

» Correct crack nucleation
probability in surface grains
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Comparison with observation (Fe imadiation)

* Predicted crack length comparable to observed crack length
» Crack initiation site correspondance at least 50%
« Damage threshold(s) identification: (mostly) confirmed
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Model predictions
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Model predictions
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Conclusion & Perspectives

Analysis of plastic strain spreading in presence of disperse defect populations:

* Dislocation displacement is controlled by cross-slip: i-helps mobile dislocations
overcoming the disperse defect clusters (enables choosing path of least
interaction), ii-helps spreading shear bands across the whole grain (secondary
channel formation)

« Shear bands dislocation substructures include extended dislocation pile-ups
« Shear band spacing controlled by grain-wide pile-ups

» Shear band broadening is gradual; controlled by inter-band wide pile-ups
 Grain boundary stress — depend on shear bands distribution

* Inter-granular crack initiation susceptibility is higher wherever the plastic strain
contrast is maximal, between adjacent pairs of grains

Perspectives:

 Improve the estimation of applied stress level, including additional hardening
mechanisms (dislocation source decoration)

« Consider 3D effects of grain diameter versus grain depth
O 25/06/2019 20
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Shear band multiplication: cross-slip (

Cross-slip of a bowed-out screw, due to obstacles

- —
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Figure 6.12 — The set-up and result corresponding to the set 9 of the table 6.3. The
image on the left is explained in the text. The image on the right corresponds to the
result of primary and cross-slip stress acting on this configuration. The x-axis refers
to the stress acting on the primary slip system, ¢, = ‘(_r',np,b in MPa and y-axis is the
stress resolved in the cross-slip plane, ¢, = G .nes b in MPa The regions in red indicate
the (G,,0,,) combination that makes the length CD equal to AB, and region in blue
indicates the (o, c.,) combination that makes the length CD tend to zero. The regions
in green indicate the ( Oy, O.) values where the length of cross-slip segment CI neither
goes to 0 nor equals distance between pinning points AB.

- In presence of obstacles (radiation defects, GB,

etc), cross-slip probability is maximal for t,;,/T¢cs

=+1

- This validates our model for predicting inter-
band distance in irradiated metals (see 06/13)

Figure 6.8 — The evolution of a three segment split composite FR source of the form
shown in the figure 6.5b. The figures from top to bottom illustrate the cross-slip segment
spreading over the whole dislocation lemgth.




Cross-slip: inferaction with defects
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I: tau_prim I

II: tau_prim_II

simulation time (ns)

& Rising tau_CS facilitates dislocation unpinning regarless of tau_prim!
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