MESOSCALE MODELLING TECHNIQUES (RPV)

<u>C. Domain</u>, G. Adjanor, J. Vidal (EDF R&D) C. Becquart, A. Legris, L. Thuinet (UMET Univ Lille) L. Malerba et al.

This project received funding under the Euratom research and training programme 2014-2018 under grant agreement N° 661913

Radiation damage

TEM, Barbu, CEA

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

16/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Relevant phenomena and appropriate computational methods for microstructure evolution

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

16/09/2018

Mesoscale modelling techniques

Object / event kinetic Monte Carlo

Cluster dynamics (rate theory)

Phase field

Coarse graining

/2018 SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Medium/long term evolution modelling methods

Kinetic Monte Carlo simulation of

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Object Kinetic Monte Carlo

Each object defined by: Emission - type

or

Object Kinetic Monte Carlo

- centre-of-mass position
- reaction radius
- possible reactions

$\Gamma_{i} = \Gamma_{i}^{0} \exp(-E_{a} / kT)$

- Advantages:
 - Flexibility
 - Computing efficiency
 - Spatial distribution

16/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Drawbacks:

- Large number of physical parameters
- No atomic configurations

Object Kinetic Monte Carlo: Object vs Event

Object Kinetic Monte Carlo: Object vs Event

EKMC

High density objects

<u>Advantages</u>:
OKMC → local rules
EKMC → many different reactions

OKMC reactions

Input: binding energies (from MD / DFT)

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

OKMC reactions

6/09/2018

OKMC reactions

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

+ reactions with very dilute elements (e.g. Cu in Fe)+ reactions with foreign interstitial atoms (e.g. C or He)

6/09/2018

OKMC parameter determination / adjustement

- □ Parameters ?
 - Interstitial & vacancy clusters mobility
 - diffusion coefficient (migration energy and jump frequency)
 - Recombination radius
 - Emission : binding energies
 - ...

09/2018

- □ How to get these parameters ?
 - experimental data
 - atomic simulations
 - ✓ molecular dynamics
 - \checkmark ab initio calculations
 - Fitting on "dedicated" lab. experiments (electrons, ions irradiation)

OKMC: SIMULATIONS ADAPTED TO DIFFERENT EXPERIMENTAL SPECIMENS

Long term simulation of the microstructure under irradiation by object kinetic Monte Carlo

Long term simulation of the microstructure:

DEFECT POPULATION at 0.1 dpa

6/09/2018 SOTERIA Training School - Sept

7 10⁻¹¹ dpa/s

(param Set II)

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

343K

Object KMC - applications

- Objectives: 3D simulation of time evolution microstructure
 - cascade annealing (generation term for rate theory)
 - sink strength calculation (input data for rate theory modelling)
- Irradiation experiment simulations
 - isochronal annealing (after electron or neutron irradiation)
 - electron irradiation under flux
 - neutron irradiation under flux
 - proton irradiation under flux

Different conditions (bulk, surface, ...)

DFT

Loop mobility model

OKMC microstructure

[Chiapetto PhD] [Chiapetto, Malerba, Becquart et al]

Mesoscale methods: MFRT

Cluster Dynamics (CD) or Mean Field Rate Theory (MFRT)

- Analytical method
- Set of N coupled ordinary differential equations (ODEs) of balance
- Mean-field approximation: only defect concentration

Example for single vacancy concentration:

Need to provide $k^2_{\ v}, \, D_v$ and α

[Phil Mag 2005]

D18

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Mesoscale methods: MFRT

$$\frac{dC_n}{dt} = G_n + \sum_m w_{m \to n} C_m - \sum_q w_{n \to q} C_n - K_n C_n$$
 All the physics is contains in
the coefficients G(j), w(k,j), K_j

Rate theory calculation

6/09/2018

- to treat austenic alloy as "grey" alloy + He treatment
- to treat ferritic alloy as "grey" alloy + one solute (Cu)

Many equations & system hard to integrate!

Alternative approach: Guillepsie method (stochastic treatment of the reactions/equations)

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Mesoscale methods: MFRT

Cluster dynamics – irradiation Fe-0.1%Cu 0.1 dpa

Mesoscale methods

MFRT and OKMC models are similar kinetic models

- can be used to simulate the same phenomena
- most details are handled quite differently in the 2 approaches

parameter or mechanism	MFRT	ΟΚΜϹ
solution method	deterministic	stochastic
time	explicit variable	inferred from processes and
		reaction rates
space	smeared, effective medium,	full spatial dependence
	possible multi-region RT	
defect production	time and space-averaged, but	discrete in time and space
sink strength, e.g. dislocations	explicit expression or input	inferred from fate of point
	parameter	defects
defect or sink density	essentially unlimited	limited (computationally) by
		simulation cell size, i.e. N =
		1/(x·y·z)

MFRT-OKMC: inherent differences

Phase field – Mesoscale 2D/3D

□ Elements of the microstructure: "Order parameters"

- Conserved order parameters: solute concentration
- Non conserved order parameters: phase

 $\begin{aligned} \eta_1(\mathbf{r},t), \ \eta_2(\mathbf{r},t), \ \eta_3(\mathbf{r},t), \ \dots \\ \eta_i(\mathbf{r},t) &= 0 \text{ if there is matrix in } (\mathbf{r},t) \\ \eta_i(\mathbf{r},t) &= 1 \text{ if there is phase i in } (\mathbf{r},t) \end{aligned}$

Prediction of order parameters describe the microstructure evolution

- □ Free energy F
- \Box F = F_c + E_{el}
- Chemical and structural contribution (short range)

$$F_{c} = \iint_{V} \left[f\left(c(r,t),\eta_{i}(r,t)\right) + \sum_{i=1}^{3} \frac{\alpha_{i}}{2} \left(\nabla \eta_{i}(r,t)\right)^{2} + \frac{\beta}{2} \left(\nabla c(r,t)\right)^{2} \right] d^{3}r$$

□ Elastic contribution (long range) $E_{el} = E_0 + E_{relax}^{hom} + E_{relax}^{het} - \sigma_{ij}^{appl} \sum_{p=1}^{Np} \int_V \varepsilon_{ij}^{00}(p) \eta_{i(p)}^2(r,t) d^3r$

Kinetic

$$\frac{\partial c(\mathbf{r},t)}{\partial t} = M \nabla^2 \frac{\delta F}{\delta c(\mathbf{r},t)}$$

Phase field - Applications

Microstructure evolution under irradiation / thermal ageing

8 SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Segregation applications

- □ Atomic data (DFT)
 - Diffusion coefficients, transport coefficients (Onsager coefficients)
 - Input for AKMC cohesive models
- Mechanisms (MD, oflattice AKMC)

- Segregation simulation
 - AKMC
 - Phase field (+elasticity)
 - Finite elements

16/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Material Multiscale Modeling Challenge

33