SOTERIA training school

DOSE-DEPENDENT NANO-FEATURES AND THEIR EFFECT ON INTER-GRANULAR CRACKING SUSCEPTIBILITY (INTERNALS)

OUTLINE

- Previous findings, up to PERFORM60 (up to 2012)
- Subsequent sub-grain modelling developments (2012-)
- Observations and poly-crystalline model (SOTERIA 2015-)

Contribution to SOTERIA WP2

Co-workers: B. Tanguy, J. Hure

Speaker: Christian Robertson

Post-irradiation plasticity mechanisms

lons irradiations: p+ or Fe⁸⁺, 300 °C

$\begin{array}{c} \text{lon irradiations} \\ \text{2 dpa, } \epsilon_p = 7\% \end{array}$

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Irradiation defect microstructure

C.Robertson (1998), 3 dpa, Kr ions

Deformation: in the form of shear bands

- i. Dislocation pile-ups: $L_{PU} \propto D_g$
- i. Secondary shear bands and then gradual band broadening

Shear band dislocation substructure

Journal of Nuclear Materials 380 (2008) 22–29

Leading dislocations

Dislocations with helix/jogs

Clear and broaden channels

Trailing dislocations

Straight piled-up dislocations

"Push" the leading dislocations

At the channel periphery: accumulation of coarse loop debris

X cleaning **dislocations**

X piled-up **dislocations**

X arrested **dislocations**

Post-irradiation plasticity mechanisms (P60)

0 dpa

Partial summary... (up to P60)

- Slip steps are fewer and smaller, after irradiation * strain localization
- Channel (shear band) thickness and spacing controls the stress concentration magnitude at the GBs and hence, crack initiation susceptibility thereof
- Loop-depleted channel (or clear band) is merely a particular shear-band type

0.89 dpa 304L Tensile test B7, specimen "nec4"

11 dpa CW 316 Tensile test B7, specimen "nec4"

Cross-slip: interaction with defects

Next step: include the ubiquitous cross-slip mechanism Interaction with $1\overline{1}1$ & 111 loops

NUMODIS MD validated: Journal of Nuclear Materials 460 (2015) 37-43

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Y[110]

X[112]

Cross-slip: interaction with defects

Stress controlled simulations I_p : segment length in primary SS $I_p + L_{cs} = 300 \text{ nm}$

- Cross-slip provides an easy path to overcome the defects

Cross-slip: shear band multiplication

Regular inter-channel spacing \leftrightarrow secondary channel in X-slip planes: [Yao 2005]

Secondary channels develop wherever CS probability is high, i.e. wherever defect interaction strength is minimal

In presence of obtacles P(cross-slip) highest: $\tau_{prim}/\tau_{CS} = \pm 1$

K. Gururaj etal, Phil. Mag. 95 No.12 (2015) 1368-1389

Shear band spacing scales with internal stress field characteristic distance

Shear band spacing: simulation...

Shear band spacing prediction?

Shear band thickness prediction?

Dislocation can glide inside shear bands wherever the stress verifies:

$$\tau_{app} + \tau_{pu(band)} > \tau_{defect}$$

[W. Karlsen, VTT, 2006]

How to chose these different terms?

- au_{pu} (inter-band pile-ups, analytical H&L model)
- $\ \ \,$ Obstacle strength τ_{defect} (MD & continuum S&B theory).
- \mathcal{F} Both $\tau_{app} \& \tau_{obs}$ relate to the irradiation conditions
- Defect cluster size
- Defect cluster number density
- Other hardening mechanisms?

Application to poly-crystals

Damage factor include stress concentration and crystallographic orientation contributions.

Comparison with observation (P+ irradiation)

[B. Tanguy, 2014, DEN/DMN/SEMI]

Irradiated 316L steel p+ 2dpa/350°C, 10^{-7} s⁻¹ up to $\epsilon_P = 4\%$ in autoclave (primary water) Applied stress considering the hardening effect: 684MPa, Area: 411.02 µm X 298.92µm Mean Defect cluster size: 13.8nm, defect number density 3.6e22 m⁻³

Comparison with observation (P+ irradiation)

The most likely to crack nucleation sites: GB presenting the largest plastic strain contrast.

- Damage indicator able to predict crack nucleation location
- Crack nucleation probability in surface grains is 1.7%

Conclusion & Perspectives

Plastic strain in presence of disperse defect populations:

- Dislocation spreading is controlled by <u>cross-slip</u>: i-helps mobile dislocations **overcoming** the disperse defect clusters, ii-helps **spreading** shear bands across the whole grain
- Shear bands dislocation substructures include extended dislocation pile-ups
- Shear band spacing controlled by grain-wide pile-ups
- Shear band thickening is gradual, controlled by inter-band wide pile-ups
- Grain boundary stress → depend on shear bands distribution
- Inter-granular crack initiation susceptibility is higher wherever the **plastic strain** contrast is maximal, between adjacent pairs of grains

Perspectives:

- Improve the estimation of applied stress level, including additionnal hardening mechanisms (dislocation source decoration)
- Consider 3D effects of grain diameter versus grain depth