

SOTERIA MIDTERM WORKSHOP

IMPROVEMENT OF THE PHYSICALLY-BASED CONSTITUTIVE STRESS-STRAIN EQUATIONS AND THE POST-IRRADIATION FRACTURE RESPONSE OF RPV STEELS

10TH APRIL 2018

Contribution to SOTERIA WP5 Co-workers: B. Marini, P. Forget, K. Singh, L. Vincent, Y. Li Speaker: **Christian Robertson**

Long-term goal or vision: predicting dose-dependent fracture toughness response based on non-destructive post-irradiation examinations (material polycrystalline microstructures, i.e. grain sizes and orientations; irradiation defect microstructures) and physically based models @minimizing/optimizing time-consuming/costly mechanical testing of post-irradiated specimens in hot cells

Cross-cutting WP2/WP3/WP5 issue

Thick-walled components: microstructure and fracture toughness variability

Microstructural variations = one possible contribution...

The Modelling efforts adressing: dose-dependent fracture response and its scattering

...including local stress distribution (MIBF)

Weakest link assumption

Cracked inclusion: brittle fracture initiator

Weakest leak assumption

I- all inclusions/particles break down, for $\varepsilon > \varepsilon_{p0}$ II- micro-cracks grow (or not) according to a definite criteria III- first micro-crack develops \rightarrow the whole specimen fails

IV- fracture toughness then directly relates to plastic zone size a_0 , near the micro-crack initiators

Cleavage fracture surface

Transition curves, DBT shift

10/04/2018

Micro-crack induced plastic zone?

- Q. Effect of straining temperature on a_0 ?
- Q. Grain size and orientation effect on a_0 ?
- Q. Dose effect, irradiation temperature effect, on a_0 ?

R. Crack-induced plasticity: dislocation-mediated

Modelling Simul. Mater. Sci. Eng. 18 (2010) 025003

 Statistical, investigation of postirradiation plasticity mechanisms using, 3D DD simulations»

Dislocation Dynamics simulations?

MnS in steel, Sci. Reports 4, 5118 (2014)

10/04/2018

Dislocation dynamics simulations?

Dislocation stress-velocity response

Kink pair (dk)

Dislocation mobility rules for RPV steels

Journal of Nuclear Materials 504 (2018) 84-93

$$v_{screw} = hJX'$$

- | X' |
- *h* : distance between Peierls valleys
 - *J* [m⁻¹s⁻¹] : kink pair nucleation rate per unit length
- X' [m] : kp mean free path before annihilation with another dk [increases with kink velocity (v_k) and decreases with J]

$$v_{screw}(\tau^*, T) = \frac{8\pi b(\tau^*)^2}{\mu Bh} X' \exp\left(-\frac{\Delta G(\tau^*, T)}{k_B T}\right)$$

Stress-dependent pre-factor

Progressive transition from Low-T to Room-T

TERIA

DD simulation setup

1µm³ ferritic grains (Fe-C or Fe-Cr):

- Defect number density and defect size depend on selected dose and T_{irr} condition
- Uni-axial tension, strain-rate controlled conditions, fixed straining T°, presence of cross-slip

Model INPUTS : grain size, kink-pair activation \geq energy, phonon drag coefficient, irradiation defect size, and number density

Predicted defect-induced evolutions

Defect-induced effect on effective screw dislocation mobility : statistically significant

SOTERIA

DIAT shift: interpretation

 $T_{apparent} - T_0$ = Defect-Induced Apparent straining Temperature shift (Δ DIAT) 10/04/2018 SOTERIA

Δ DIAT: a systematical investigation

N: defect number density (in nm⁻³); *D*: defect size (in nm); and **3 material-dependent scaling parameters** (ΔT_{max} , *d* and λ)

This description potentially includes segregation effects at dislocation sources (augmenting ΔT_{max}) and GB (decreasing critical stresslocalisation threshold \rightarrow shear band thickness *d* and mean free path λ)

SOTERIA

$\Delta DIAT/\Delta DBTT$ comparison

 $rac{DIAT}{\approx} \Delta DBTT$ [irradiation conditions: little or no segregation at fracture initiators (particles or GB)]

- Absolute toughness levels: link with local approach of fracture/MIBF approach/models
- Support/link dose-dependent crystal plasticity...

Crystal plasticity approach

Explicitly models discrete grains and slip systems, accounting for anisotropy of single crystal properties and crystallographic texture.

➢ Slip system level constitutive equations for dislocations with use of Internal state variables for various parameters at each slip system

> Approach used to study aggregate of crystals to obtain a better understanding of single-crystal or poly-crystal behavior.

Support from DD-based simulations

Physically based stress-velocity rules, systemsystem interaction strength

Evolution of irradiation defect population with increasing strain, mobile dislocation density evolution

10/04/2018

Modified T°-dependent mobility rule

$$\frac{1}{\dot{\gamma}_{total}} = \frac{1}{\dot{\gamma}_{nuc}} + \frac{1}{\dot{\gamma}_{prop}}$$
$$\dot{\gamma}_{nuc} = \rho_{mob} b \frac{8\pi \tau_{eff}^2}{\mu B} exp \left[-\frac{\Delta H_0}{k_B T} \left(1 - \left[\frac{\tau_{eff}}{\tau_0} \right]^p \right)^q \right] l_s$$
(1)

Inverse of strain rate sensitivity parameter

Reference shear strain rate

$$\dot{\gamma}_{prop1} = \dot{\gamma_0} \left(\frac{\tau_{RSS}}{\tau_c}\right)^{n}$$

$$\dot{\gamma}_{total} \propto \frac{l_s X_\infty}{l_s + X_\infty}$$

$$\dot{\gamma}_{prop2} = \rho_{mob} b \frac{8\pi \tau_{eff}^2}{\mu B} exp \left[-\frac{\Delta H_0}{k_B T} \left(1 - \left[\frac{\tau_{eff}}{\tau_0} \right]^p \right)^q \right] X_\infty$$

$$X_\infty = 2\sqrt{\frac{v_k}{J}}$$
(2)

 $\dot{\gamma_{nuc}}$ accounts for thermally activated kink pair nucleation.

The stress-independent l_s term assumes that each nucleated kink-pair sweeps the whole dislocation line, while a given screw dislocation moves from one Peierls valley to the next one.

Requirement of very high value of n = 100 limits its numerical implementation. Generally lower values of n=50 is used to avoid numerical issues.

Use of lower value of n leads to inaccurate coupling between the rate sensitive macroscopic response and rate sensitive evolution of critical shear stress.

Formulations (1)&(2) yield comparable results at the strain rate 10^{-4} for $\Delta H_0 > 0.6$ eV.

However, formulation (2) is able to handle a **larger range** of strain rate and material parameters. It is also found to be more robust in terms of convergence in finite element formulation.

10/04/2018

Modified dislocation/defect interaction rule

 \succ Irradiation defects (assumed to be uniformly distributed) are accounted as obstacles cutting the dislocation glide planes hence treated as forest obstacles to the glide of dislocations.

$$\alpha^A = \sqrt{\sum \alpha^{AF} \frac{\rho^F}{\rho^A_{obs}}}$$

> Irradiation defects with their density $\rho_{irr} = N_{irr}d_{irr}$ and respective strength interacts with dislocations.

 \succ Dose level controls the number of loops formed and temperature controls the size of the loop.

Irradiation defect density evolution

$$\dot{
ho}_{irr} = -\xi
ho_{irr} \dot{\gamma}$$
Affects au_{eff} in eq. (2)

This term is defect number density dependent (irradiation dose)

10/04/2018

SOTERIA

 \mathbb{N}

affects gamma-dot in eq. (2)

Interaction means dislocation pinning, which subsequently act as source of mobile dislocation for their further generation.

 $\dot{\rho_m} = \frac{\kappa\xi}{r_0} \rho_{irr(t)} \dot{\gamma}$

This mechanism/term is defect-size dependent (irradiation temperature)

SOTERIA

Through DD simulations
$$\rightarrow$$
 significant dose-
dependent increase in total and mobile
dislocation density.

This increase is ascribed to interaction of screw dislocations with irradiation defects \rightarrow dislocation pinning, multiplication.

Preliminary results: FEM model

To predict stress field near fracture initiator and its dose-dependent evolutions

 ${\ensuremath{\,^{\ensuremath{\sigma}}}}$ Link with DD calculations: $\Delta DIAT$ prediciton ${\ensuremath{\,^{\ensuremath{\sigma}}}}$ Link with MIBF model

Preliminary results: dose-dependent stresses

10/04/2018

SOTERIA

Preliminary results: dose-dependent stresses

Irradiation defect size - 15 nm

Preliminary results: link with MIBF model

1,2

1

0.8

ፈ 0,6

0,4

0.2

Ongoing: to compare \triangle DIAT and \triangle DBTT based on MIBF prediction

In presence of disperse defect populations:

- Weakest link fracture framework: toughness level is controlled by the **plastic zone size** (a_0) , off the BF initiators (particles or GB)
- Plastic zone size «a₀» is **dose-dependent** and scales with the **apparent (screw) dislocation mobility**
- Apparent dislocation mobility depends on dispersed defect populations and can be estimated using the statistical Δ DIAT concept
- Calculated Δ DIAT levels are comparable to DBT transition <u>shifts</u>, for a given disperse defect microstructure (*N*, D)
- $\bullet\,\text{DD}$ and ΔDIAT approach used in support of crystal plasticity calculation framework
- Corresponding dose-dependent stress distributions to feed MIBF model, predicting DBT level and shift

Perspectives:

- To apply Δ DIAT method to a broader range of materials and irradiation conditions
- To predict dose-dependent evolutions of upper shelve level

The SOTERIA Consortium

The SOTERIA Contacts

The SOTERIA Project Coordinator

Christian ROBERTSON CEA christian.robertson@cea.fr

The SOTERIA Project Office

Herman BERTRAND ARTTIC bertrand@arttic.eu

www.soteria-project.eu

This project received funding under the Euratom research and training programme 2014-2018 under grant agreement N° 661913.

Fracture toughness in RPV steels?

J. Pressure Vessel Technol 139(4), 041410 (2017)

Low-C ferritic RPV steel

Populations of inclusions/particles
 Sub-grain laths and lath-blocks

Discussion: ADIAT concept validation

Dose-independent «Master curve»: tau*

Dose-independent Master curve: K

