

Determination of Cr diffusivity in pure Ni and Ni-20Cr alloy

Thomas Gheno, <u>Laure Martinelli</u>, Clara Desgranges, François Jomard (CNRS)

 \rightarrow 4.2 Characterisation of cold work effects on microstructure

Objective is to understand the Cr depletion depth observed at low temperatures in oxidized cracks formed by stress corrosion cracking in PWR: extrapolation made from high temperature measurements of Cr diffusivity cannot explain it. However if diffusion coefficients are higher at low temperature (as data obtained by Chetriou *et al*), the Cr depletion depth could be explained

UTERIA

 \rightarrow Need of Cr diffusion coefficient at low temperature

Content

- 1. In volume
 - Cr in Ni
 - ⁵⁴Cr in Ni-20Cr
- 2. In grain boundaries (Cr in Ni)
 - Annealed samples, regimes B and C
 - Rolled samples

Method

Experimental protocole:

- rolling-recristallization of the substrat (Ni/Ni-20Cr)
- Mechanical grinding until 1 μm
- Thin deposit (5 nm) of natural Cr (for diffusion in pure Ni)/⁵⁴Cr (for diffusion in Ni-20Cr) by sublimation
- Ageing in glass ampoule under vaccuum, with Zr chips
- Concentration profile measured by SIMS
- Abrasion depth is then measured by contact profilometric method

Depth profile of a SIMS crater

SIMS Analyses : \bigotimes 8-60 µm \rightarrow measure performed within one grain or for one single grain boundary

Ni rolled-recristallized

1. Volume diffusion: temperature / time conditions for ageing

Conditions:

- Characteristic diffusion depth > 100 nm small enough for having SIMS flat floor crater and deep enough for having enough points for good fit
- Ageing time has to be much higher (10 times) than the incompressible heating/cooling time (5 min) and reasonable (one year at maximum)

1. Volume diffusion: results treatments

1. Volume diffusion: results for Cr in Ni

- Very good agreement with extrapolation at low temperatures of measurements made at high temperatures → no accelerated diffusion at low temperature
- These results cannot explain the higher Cr depletion depth observed during oxidation in PWR

1. Volume diffusion: results for Cr in Ni-20Cr

Very good agreement with extrapolation at low temperatures of measurements made at high temperatures

1. Volume diffusion: all data for Cr in Ni alloys and pure Ni

- Our results in agreement with data measured at high temperatures
- *D*_{Cr*} is similar in Ni, Ni-Cr, Ni-Fe-Cr, Fe-Ni-Cr → model alloys are good candidates for measurement of Cr diffusivities in FCC Ni-Fe-Cr alloys

Grain boundary diffusion: temperature / time conditions for ageing → only Cr in Ni

Conditions:

- For B regime $\delta < 10\sqrt{D_{\rm v}t}$ and for C regime $\delta > 10\sqrt{D_{\rm v}t}$
- Ageing time has to be much higher than the incompressible heating/cooling time (5 min)

I. Kaur, Y. Mishin, W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, 1995 H. Mehrer, Diffusion in Solids, 2007

2. Grain boundary diffusion: Regime B SIMS profiles

Ageing: 28 h at 563 °C

2. Grain boundary diffusion: Regime B 90% rolled Ni

Positive slope

During diffusion step \rightarrow fast recristallization

Optical image of the crater floor

2. Grain boundary diffusion: Regime C SIMS profiles

2. Grain boundary diffusion: all results

- Intergranular Diffusivity very scattered → due to various GB misorientation?
 Statistics could be done
- Trend in agreement with data obtained at high temperature
- No effect of cold-work & recrystallization on Cr diffusion

3. Summary

3 orders of magnitudes between diffusion in grain boundaries and in volume \rightarrow order of magnitudes frequently obtained

SOTERIA

4. Conclusions and prospects

Tracer Diffusion In volume

- D^{Ni}_{Cr*} measured until 542 °C (versus 950 °C before)
- *Q* constant between 1400 and 542 °C
- Lower temperatures: need a surface cleaning before Cr deposit, and SIMS profile for very small depth (SIMS until 50 nm, Tomographic Atom Probe for lower?)
- D_{Cr^*} is very similar for Ni, Ni-Cr, Ni-Fe-Cr, Fe-Ni-Cr

In grain boundaries

- Measurements of *D*^{Ni}_{Cr*} performed until 346 °C
- Very complicated
- $D_{Cr^*}^{Ni-20Cr}$ impossible due to high level (2.365 at %) of ⁵⁴Cr within natural Cr
- Obtained results in agreement with data measured at high temperatures → no accelerated diffusion at low temperature
- Cr diffusion is not increased in rolled samples → no accelerated diffusion due to cold-work

4. Conclusions and prospects

SUTERIA

This study cannot explain the higher Cr depletion depth observed in oxidized cracks formed by stress corrosion cracking in PWR

- Is it due to combine effect of diffusion and stress?
 →Cr tracer diffusion coefficient could be measured under creep test (will be done in other project)
- Is it due to combine effect of diffusion and oxidation? Vacancies created in alloy by oxidation could accelerate the Cr diffusion

 → oxidation tests with sample of various microstructures are conducted in gas environments firstly and in PWR conditions secondly → in progress

The SOTERIA Consortium

